
B.L. Tierney
Lawrence Berkeley National Laboratory

DRAFT: 1 December 1, 2000

TCP Tuning Guide for Distributed Application on Wide Area Networks

Brian L. Tierney
Data Intensive Distributed Computing Group

Lawrence Berkeley National Laboratory

1.0 Introduction
Obtaining good TCP throughput across a wide area network usually requires some tuning. This is

especially true in high-speed “next generation internet”-like networks, where, even though there is no
congestion, an application may see only a small percentage of the total available bandwidth. This
document describes several techniques required to obtain good throughput, and describes tools for
diagnosing problems. This is a printer-friendly version of the web document:
http://www-didc.lbl.gov/tcp-wan.html. Check the web page for updates. URLs for all tools mentioned
in this document are listed in section 5.

This document is aimed mainly at software developers. All too often software developers blame
the network for poor performance, when in fact the problem is un-tuned software. However there are
times when the network (or the operating system, as shown in section 4) is in fact the problem. This
document explains some tools that can give software developers the evidence needed to make
network engineers take them seriously.

2.0 TCP Buffer Sizes
TCP uses what it calls the “congestion window”, or CWND, to determine how many packets can

be sent at one time. The larger the congestion window size, the higher the throughput. The TCP “slow
start” and “congestion avoidance” algorithms determine the size of the congestion window [1]. The
maximum congestion window is related to the amount of buffer space that the kernel allocates for
each socket. For each socket, there is a default value for the buffer size, which can be changed by the
program using a system library call just before opening the socket. There is also a kernel enforced
maximum buffer size. The buffer size can be adjusted for both the send and receive ends of the
socket.

To get maximal throughput it is critical to use optimal TCP send and receive socket buffer sizes for
the link you are using. If the buffers are too small, the TCP congestion window will never fully open
up. If the buffers are too large, the sender can overrun the receiver, and the TCP window will shut
down. For more information, see [2] and [3].

Users often wonder why, on a network the where slowest hop from site A to site B is 100 Mbit/sec
(about 12 MB/sec), using ftp they are only get a throughput of 500 KBytes/sec. The answer is obvious
if you consider the following: Typical latency across the US is about 25 ms, and many operating
systems use a default TCP buffer size of either 24 or 32 KBytes, (Linux is only 8 KBytes). To fill a 12
MB/sec pipe of this latency requires 12 * 0.025 sec = 300 KB of data. Since the TCP buffer is at most
32 KB, the maximum utilization of the pipe can be only 300/32, or 9% (1.1 MB/sec), even under ideal
conditions. In fact, the buffer size typically needs to be double the TCP congestion window size to
keep the pipe full, so in reality only 5% utilization of the network is achieved, or about 500 KB/sec.

The optimal buffer size is twice the bandwidth*delay product of the link:
buffer size = 2 * bandwidth * delay

B.L. Tierney
Lawrence Berkeley National Laboratory

DRAFT: 2 December 1, 2000

The ping program can be used to get the delay, and pipechar or pchar, described below, can be
used to get the bandwidth of the slowest hop in your path. Since ping gives the round trip time (RTT),
this formula can be used instead of the previous one:

buffer size = bandwidth * RTT.
For example, if your ping time is 50 ms, and the end-to-end network consists of all 100 BT ethernet

and OC3 (155 Mbps), the TCP buffers should be 0.05 sec * 10 MB/sec = 500 KBytes. If you are
connected via a T1 line (1 Mbit/sec) or less the default buffers are fine, but if you are using a network
faster than that you will almost certainly benefit from some buffer tuning.

Two TCP settings need to be considered: The default TCP send and receive buffer size, and the
maximum TCP send and receive buffer size. Note that most of today UNIX OS's by default have a
maximum TCP buffer size of only 256 KB (and the default maximum for Linux is only 64 KB!). For
instructions on how to increase the maximum TCP buffer, see Appendix A. Setting the default TCP
buffer size greater than 128 KB will adversely affect LAN performance. Instead, the UNIX
setsockopt call should be used in your sender and receiver to set the optimal buffer size for the link
you are using. Usage of setsockopt is described in Appendix B.

It is not necessary to set both the send and receive buffer to the optimal value, as the socket will use
the smaller of the two values. However it is necessary to make sure both are large enough. A common
technique is to set the buffer in the server quite large (e.g.: 512KB), and then let the client determine
and set the correct “optimal” value.

3.0 Other Techniques
Other useful techniques to improve performance over wide-area networks include:
• Use large data block sizes. For example, most ftp implementations send data in 8 KB blocks.

Use around 64 KB instead, as disk reads, memory copies, and network transfers are usually
faster with large data blocks. However, be careful on QoS enabled paths, as large blocks are
more likely to overflow router buffers. 32K might be better on these networks.

• Send lots of data at a time. If there is not enough data sent to keep the pipe full, the TCP win-
dow will never fully open up. In general, 0.5 MB or greater is a good amount to send at a time.

• Use multiple sockets. For example, to transfer a large file, send 25% of the file on each of 4
sockets in parallel. On a congested network, this often provides linear speedup! This only helps
for large read/writes. Typically 4 sockets per host is a good number to use; with more than 4 the
sockets will interfere with each other. The psockets library from the University of Illinois at
Chicago makes it easy to add this ability to your applications. However, be careful using this
technique with gigabit Ethernet (1000BT) and a relatively under-powered receiver host. For
example, a 500 MHz Pentium needs about 90% of the CPU just to read a single socket using
Gigabit ethernet, and sending data on 2 sockets instead of just 1 will decrease throughput dra-
matically.

• Use asynchronous I/O, using a thread pool, or a select/poll mechanism. There is usually some-
thing else the application can be doing while it is blocked waiting for data. For example, use
one thread to read data from the network, and a separate thread to write the data to disk. If read-
ing from multiple sockets, using a thread pool to handle multiple sockets in parallel can also
help, especially on multi-CPU hosts.

• Avoid unnecessary memory copies. Try to read the data straight into the memory location that
will later need it. For example, if the data will be displayed by an X Windows application, read
it directly into the X pixmap structure. Do not read in into a read buffer, and then copy it to the
X buffer.

B.L. Tierney
Lawrence Berkeley National Laboratory

DRAFT: 3 December 1, 2000

4.0 Network problems
 If you still have trouble getting high throughput, the problem may well be in the network. First, use

netstat -s to see if there are a lot of TCP retransmissions. TCP retransmits usually indicate network
congestion, but can also happen with bad network hardware, or misconfigured networks. You may
also see some TCP retransmissions if the sending host is much faster than the receiving host, but TCP
flow control should make the number of retransmits relatively low.

4.1 Use pipechar and pchar
The pchar tool does a pretty good job of giving hop-by-hop performance. If one of the hops is

much slower than expected, this may indicate a network problem, and you might think about
contacting your network administrator. Note that pchar often gives wrong or even negative results on
very high speed links. Its most reliable on link that are OC3 (155 Mbps) or slower.

pipechar is a new tool, developed at LBNL, that will also find your bottleneck hop, and seems to
give more accurate results than pchar. While pchar attempts to accurately report the bandwidth and
loss characteristics of every hop in the path, pipechar only accurately reports the slowest hop; results
for all segments beyond the slowest segment will not be accurate. For example, if the first hop is the
slowest, pipechar results for all other segments will be meaningless. Another significant difference
between the tools is the time to run them. For a typical WAN path of 8 hops, pipechar takes about 1-2
minutes, but pchar may take up to 1 hour.

If you are trying to determine the optimal TCP window size, the bottleneck hop is the only thing
you are interested in. Therefore pipechar is clearly the better tool, since it takes much less time to
identify the slowest hop. However pchar is still a useful debugging tool.

4.2 Check the Duplex Mode
A common source of LAN trouble with 100BT networks is that the host is set to full duplex, but

the ethernet switch is set to half-duplex, or visa versa. Most newer hardware will auto-negotiate this,
but with some older hardware, auto-negotiation will sometimes fail, with the result being a working
but very slow network (typically only 1-2 Mbps). Its best for both to be in full duplex if possible, but
some older 100BT equipment only supports half-duplex. See Appendix C for some ways to check
what your systems are set to.

4.3 Use tcptrace
You can also use tcpdump to try to see exactly what TCP is doing. tcptrace is a very nice tool for

formatting tcpdump output, and then xplot is used to view the results.
 For example:

 tcpdump -s 100 -w /tmp/tcpdump.out host myhost
 tcptrace -Sl /tmp/tcpdump.out
 xplot /tmp/a2b_tsg.xpl

NLANR’s TCP Testrig is a nice wrapper for all of these tools, and includes information on how to
make sense out of the results. An example of tcptrace results is shown in Figure1, which shows the
TCP slow start algorithm opening up the TCP congestion windows at the beginning of a data
transmission.

I recently used these tools to help identify a rather severe TCP bug in Linux. On a particular wide
area network path I was getting a consistent 20 Mbits/sec throughput with Solaris or FreeBSD
sending to Solaris, Linux, or FreeBSD, but only 0.5 Mbits/sec with Linux to Solaris or FreeBSD

B.L. Tierney
Lawrence Berkeley National Laboratory

DRAFT: 4 December 1, 2000

(Linux to Linux was also fine.Using tcpdump/tcptrace/xplot, I got the following plots. You have to be
a serious TCP expert to really understand these plots (which I am not), but its pretty clear that
something strange is going on in the Linux sender. Using this data in Figure 2 as evidence, I was
quickly able to convince the Linux TCP developers that there was a bug here, and the Linux
2.4.0-test12 kernel now includes a fix for this problem. 1

5.0 Tools
Here is the list of tools mentioned in this document, and a few others you may find useful:
• iperf: currently the best tool for measuring end-to-end TCP/UDP performance

(http://dast.nlanr.net/Projects/Iperf/index.html)
• NetTune: a library to increase the socket buffer size via an environment variable

(http://www.ncne.nlanr.net/tools/application.html)
• pipechar: hop-by-hop bottleneck analysis tool (http://www-didc.lbl.gov/pipechar/)
• pchar: hop by hop performance measurement tool

(http://www.employees.org/~bmah/Software/pchar/)
• psockets: easy to use parallel sockets library: (http://www.ncdm.uic.edu/html/psockets.html)
• tcpdump: dumps all TCP header information for a specified source/destination

(ftp://ftp.ee.lbl.gov/)
• tcptrace: formats tcpdump output for analysis using xplot

(http://jarok.cs.ohiou.edu/software/tcptrace/)

1. This Linux sender bug only occurs appears on networks with at least a 25 ms RTT and a end-to-end
network path of at least 10 Mbits/sec, and must have at least some congestion. The bug has something
to do with the computation of the TCP RTO timer. If you are running a Linux server in this sort of
network environment, I strongly encourage you to upgrade your kernel for find and install patch. For
more information, see: http://www-didc.lbl.gov/Linux-tcp-bug.html

Figure 1: tcptrace results showing TCP slow start

Figure 1: tcptrace results showing TCP slow start

B.L. Tierney
Lawrence Berkeley National Laboratory

DRAFT: 5 December 1, 2000

• NLANR TCP Testrig: Nice wrapper for tcpdump and tcptrace tools
(http://www.ncne.nlanr.net/TCP/testrig/)

• traceroute: lists all routers from current host to remote host (ftp://ftp.ee.lbl.gov/)
Many other tools are listed at the NLANR Tools Repostitory at (http://www.ncne.nlanr.net/tools/).

6.0 Other Useful Links
• solaris 2.6 SACK patch: ftp://playground.sun.com/pub/sack/tcp.sack.tar.Z (SACK is part of

Solaris >= 2.7 and Linux >= 2.2)
• Pittsburgh Supercomputer Center Tuning Guide: http://www.psc.edu/network-

ing/perf_tune.html

7.0 Updates
The goal is to continually update this document. Please send additions and corrections to

bltierney@lbl.gov. Note that the web-based version at http://www-didc.lbl.gov/tcp-wan.html may be
more up to date.

8.0 Acknowledgments
The work described in this paper is supported by the U. S. Dept. of Energy, Office of Science,

Office of Computational and Technology Research, Mathematical, Information, and Computational
Sciences Division (http://www.er.doe.gov/production/octr/mics/index.html), under contract
DE-AC03-76SF00098 with the University of California. This is report no. LBNL-45261.

9.0 References

[1] V. Jacobson, “Congestion Avoidance and Control,” Proceedings of ACM SIGCOMM ‘88, August 1988.

[2] Semke, J. Mahdavi, M. Mathis, “Automatic TCP Buffer Tuning,” Computer Communication Review, ACM SIG-
COMM, volume 28, number 4, Oct. 1998.

[3] Tierney, B. Lee, J., Crowley, B., Holding, M., Hylton, J., Drake, F., “A Network-Aware Distributed Storage Cache
for Data Intensive Environments”, Proceeding of IEEE High Performance Distributed Computing conference
(HPDC-8), August 1999, LBNL-42896.

Linux to Linux Linux to Solaris
Figure 2: Linux TCP Sender Bug

B.L. Tierney
Lawrence Berkeley National Laboratory

DRAFT: 6 December 1, 2000

Appendix A: Changing TCP System Default Values
On Linux, add something like the following to one of your boot scripts. On our systems, we add the

following to /etc/rc.d/rc.local to increase the maximum buffers to 8MB and the default to 64KB.
 echo 8388608 > /proc/sys/net/core/wmem_max
 echo 8388608 > /proc/sys/net/core/rmem_max
 echo 65536 > /proc/sys/net/core/rmem_default
 echo 65536 > /proc/sys/net/core/wmem_default

 For Solaris, create a boot script similar to this (e.g.: /etc./rc2.d/S99ndd)
#!/bin/sh
increase max tcp window
Rule-of-thumb: max_buf = 2 x cwnd_max (congestion window)
ndd -set /dev/tcp tcp_max_buf 4194304
ndd -set /dev/tcp tcp_cwnd_max 2097152

increase DEFAULT tcp window size
ndd -set /dev/tcp tcp_xmit_hiwat 65536
ndd -set /dev/tcp tcp_recv_hiwat 65536
#
osver=`uname -r`
Turn on Selective Acks (SACK)
if [$osver = "5.7"]; then
 # SACK is on in “passive” mode by default in Solaris.
 # This will set it to “active” mode
 ndd -set /dev/tcp tcp_sack_permitted 2
fi

 Note that SACK comes as part of Solaris >= 2.7, but for solaris 2.6, you must install the SACK
patch, available from ftp://playground.sun.com/pub/sack/tcp.sack.tar.Z

 For Irix (6.4,6.5), the maximum TCP buffer doesn’t appear to be setable, and is fixed at 4 MB. To
modify the default buffer size edit the file: /var/sysgen/master.d/bsd, and set:

 tcp_sendspace=65536
 tcp_recvspace=65536

 See the PSC TCP performance tuning guide (http://www.psc.edu/networking/perf_tune.html) for
information on setting TCP parameters for other operating systems.

B.L. Tierney
Lawrence Berkeley National Laboratory

DRAFT: 7 December 1, 2000

Appendix B: C Code to set the TCP buffer size

Here is how to use the setsockopt call to set TCP buffer sizes within your application using C:
int skt, int sndsize;
err = setsockopt(skt, SOL_SOCKET, SO_SNDBUF, (char *)&sndsize,
 (int)sizeof(sndsize));

or
int skt, int sndsize;
err = setsockopt(skt, SOL_SOCKET, SO_RCVBUF, (char *)&sndsize,
 (int)sizeof(sndsize));

Here is sample C code for checking what the buffer size is currently set to:
int sockbufsize = 0;
int size = sizeof(int);

err = getsockopt(skt, SOL_SOCKET, SO_RCVBUF,
(char *)&sockbufsize,&size);

Note: it is a good idea to always call getsockopt after setting the buffer size, to make sure that the
OS supports buffers of that size. The best place to check it is after the server listen() or client
connect(). Some OS's seem to modify the TCP window size to their max or default at that time. Also
note the Linux mysteriously doubles whatever value you pass to the setsockopt call, so when you do a
getsockopt you will see double what you asked for. Don’t worry, as this is “normal” for Linux.

B.L. Tierney
Lawrence Berkeley National Laboratory

DRAFT: 8 December 1, 2000

Appendix C: Checking for Full vs. Half Duplex mode.
Have your network administrator check what duplex your switch or hub is set to, and then check

your hosts.
On Solaris, here is the command to check the duplex:

 ndd /dev/hme link_mode
Where a return value of 0 = half duplex, and 1 = full duplex
To force to full duplex:

ndd -sec /dev/hme adv_100fdx_cap
ndd -set /dev/hme adv_autoneg_cap 0

To force to half duplex:
ndd -sec /dev/hme adv_100hdx_cap
ndd -set /dev/hme adv_autoneg_cap 0

Please send info on other operating systems to bltierney@lbl.gov, and I’ll add them to this
document.

